Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxins (Basel) ; 16(2)2024 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-38393179

RESUMO

Phospholipases A2 (PLA2s) are a large family of snake toxins manifesting diverse biological effects, which are not always related to phospholipolytic activity. Snake venom PLA2s (svPLA2s) are extracellular proteins with a molecular mass of 13-14 kDa. They are present in venoms in the form of monomers, dimers, and larger oligomers. The cardiovascular system is one of the multiple svPLA2 targets in prey organisms. The results obtained previously on the cardiovascular effects of monomeric svPLA2s were inconsistent, while the data on the dimeric svPLA2 crotoxin from the rattlesnake Crotalus durissus terrificus showed that it significantly reduced the contractile force of guinea pig hearts. Here, we studied the effects of the heterodimeric svPLA2 HDP-1 from the viper Vipera nikolskii on papillary muscle (PM) contractility and the tension of the aortic rings (ARs). HDP-1 is structurally different from crotoxin, and over a wide range of concentrations, it produced a long-term, stable, positive inotropic effect in PMs, which did not turn into contractures at the concentrations studied. This also distinguishes HDP-1 from the monomeric svPLA2s, which at high concentrations inhibited cardiac function. HDP-1, when acting on ARs preconstricted with 10 µM phenylephrine, induced a vasorelaxant effect, similar to some other svPLA2s. These are the first indications of the cardiac and vascular effects of true vipers' heterodimeric svPLA2s.


Assuntos
Venenos de Crotalídeos , Crotoxina , 60573 , Ratos , Animais , Cobaias , Crotoxina/farmacologia , Músculos Papilares , 60568 , Aorta Torácica/metabolismo , Fosfolipases A2/farmacologia , Fosfolipases A2/metabolismo , Crotalus/metabolismo , Venenos de Serpentes/metabolismo , Poliésteres , Venenos de Crotalídeos/toxicidade , Venenos de Crotalídeos/metabolismo
2.
J Therm Biol ; 119: 103785, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38320933

RESUMO

Extracellular Ca2+ plays a pivotal role in the regulation of cardiac contractility under normal and extreme conditions. Here, by using nickel chloride (NiCl2), a non-specific blocker of extracellular Ca2+ influx, we studied the input of extracellular Ca2+ on the regulation of papillary muscle (PM) contractility under normal and hypothermic conditions in ground squirrels (GS), and rats. By measuring isometric force of contraction, we studied how NiCl2 affects force-frequency relationship and the rest effect in PM of these species at 30 °C and 10 °C. We found that at 30 °C 1.5 mM NiCl2 significantly reduced force of contraction across entire frequency range in active GS and rats, whereas in hibernating GS force of contraction was reduced at low and high frequency range. Additionally, NiCl2 evoked spontaneous contractility in rats but not GS PM. The rest effect was significantly reduced by NiCl2 for active GS and rats but not hibernating GS. At 10 °C, NiCl2 fully reduced contractility in active GS and, to a lesser extent, in rats, whereas in hibernating GS it was significant only at 0.3 Hz. The rest effect was significantly reduced by NiCl2 in both active and hibernating GS, whereas it was unmasked in rats that had high contractility under hypothermic conditions in control. Our results show a significant contribution of extracellular Ca2+ to myocardial contractility in GS not only in active but also in hibernating states, especially under hypothermic conditions, whereas limitation of extracellular Ca2+ influx in rats under hypothermia can play protective role for myocardial contractility.


Assuntos
Hibernação , Hipotermia , Níquel , Ratos , Animais , Músculos Papilares/fisiologia , Hipotermia/induzido quimicamente , Ratos Wistar , Sciuridae/fisiologia , Hibernação/fisiologia
3.
Pflugers Arch ; 476(3): 407-421, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38253680

RESUMO

25-Hydroxycholesterol (25HC) is a biologically active oxysterol, whose production greatly increases during inflammation by macrophages and dendritic cells. The inflammatory reactions are frequently accompanied by changes in heart regulation, such as blunting of the cardiac ß-adrenergic receptor (AR) signaling. Here, the mechanism of 25HC-dependent modulation of responses to ß-AR activation was studied in the atria of mice. 25HC at the submicromolar levels decreased the ß-AR-mediated positive inotropic effect and enhancement of the Ca2+ transient amplitude, without changing NO production. Positive inotropic responses to ß1-AR (but not ß2-AR) activation were markedly attenuated by 25HC. The depressant action of 25HC on the ß1-AR-mediated responses was prevented by selective ß3-AR antagonists as well as inhibitors of Gi protein, Gßγ, G protein-coupled receptor kinase 2/3, or ß-arrestin. Simultaneously, blockers of protein kinase D and C as well as a phosphodiesterase inhibitor did not preclude the negative action of 25HC on the inotropic response to ß-AR activation. Thus, 25HC can suppress the ß1-AR-dependent effects via engaging ß3-AR, Gi protein, Gßγ, G protein-coupled receptor kinase, and ß-arrestin. This 25HC-dependent mechanism can contribute to the inflammatory-related alterations in the atrial ß-adrenergic signaling.


Assuntos
Adrenérgicos , Átrios do Coração , Hidroxicolesteróis , Camundongos , Animais , Adrenérgicos/metabolismo , Átrios do Coração/metabolismo , Receptores Adrenérgicos beta , Receptores Adrenérgicos beta 2/metabolismo , beta-Arrestinas/metabolismo , Agonistas Adrenérgicos beta/farmacologia
4.
ACS Appl Mater Interfaces ; 15(42): 49299-49311, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37843052

RESUMO

A noncovalent integration of nanosheets of molybdenum disulfide (MoS2) and the zinc porphyrin complex Zn(II) 5,10,15,20-tetrakis(4-carboxyphenyl)porphine (ZnTCPP) through coordination bonding with metal clusters of zinc acetate (Zn[OAc]2) was applied for synthesis of stable hybrid nanomaterial avoiding surface prefunctionalization. The X-ray powder diffraction in combination with the BET nitrogen adsorption method confirms formation of a ZnTCPP-based surface-attached metal-organic framework (SURMOF) with micropores of 1.63 nm on the MoS2 nanosheets. Fluorescence spectroscopy confirmed Forster resonance energy transfer (FRET) between MoS2 and ZnTCPP without contact quenching. Fluorescent trapping with terephthalic acid for hydroxyl radicals and Sensor Green for singlet oxygen was applied for studying the pathways of photodegradation of model organic pollutant 1,5-dihydroxynaphthalene (DHN) in the presence of SURMOF/MoS2. Visible light initiates sensitization through the excitation of ZnTCPP generating singlet oxygen, whereas UV-light promotes either aerobic FRET-mediated "Z scheme" or anaerobic "Type II heterojunction" mechanisms. Owing to its multimodal photochemistry, the SURMOF/MoS2 hybrid showed comparatively high photocatalytic activity in UV-assisted degradation of DHN (keffUV = 4.0 × 10-2 min-1) as well as the antibacterial activity confirmed by E. coli survival test under visible light. Noncovalent self-assembly utilizing coordination bonding in SURMOFs as supramolecular adhesive to avoid surface premodification provides a basis for new types of multicomponent nanosystems with switchable functionalities by combining different 2D materials and chromophores in one hybrid structure.

5.
Int J Mol Sci ; 24(11)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37298207

RESUMO

Cardiotoxins (CaTx) of the three-finger toxin family are one of the main components of cobra venoms. Depending on the structure of the N-terminal or the central polypeptide loop, they are classified into either group I and II or P- and S-types, respectively, and toxins of different groups or types interact with lipid membranes variably. While their main target in the organism is the cardiovascular system, there is no data on the effects of CaTxs from different groups or types on cardiomyocytes. To evaluate these effects, a fluorescence measurement of intracellular Ca2+ concentration and an assessment of the rat cardiomyocytes' shape were used. The obtained results showed that CaTxs of group I containing two adjacent proline residues in the N-terminal loop were less toxic to cardiomyocytes than group II toxins and that CaTxs of S-type were less active than P-type ones. The highest activity was observed for Naja oxiana cobra cardiotoxin 2, which is of P-type and belongs to group II. For the first time, the effects of CaTxs of different groups and types on the cardiomyocytes were studied, and the data obtained showed that the CaTx toxicity to cardiomyocytes depends on the structures both of the N-terminal and central polypeptide loops.


Assuntos
Proteínas Cardiotóxicas de Elapídeos , Contratura , Toxinas Biológicas , Ratos , Animais , Proteínas Cardiotóxicas de Elapídeos/farmacologia , Proteínas Cardiotóxicas de Elapídeos/toxicidade , Cálcio , Miócitos Cardíacos , Venenos Elapídicos/química , Peptídeos , Cálcio da Dieta
6.
Sci Rep ; 13(1): 4088, 2023 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-36906622

RESUMO

Uranium oxide microparticles ingestion is one of the potential sources of internal radiation doses to the humans at accidental or undesirable releases of radioactive materials. It is important to predict the obtained dose and possible biological effect of these microparticles by studying uranium oxides transformations in case of their ingestion or inhalation. Using a combination of methods, a complex examination of structural changes of uranium oxides in the range from UO2 to U4O9, U3O8 and UO3 as well as before and after exposure of uranium oxides in simulated biological fluids: gastro-intestinal and lung-was carried out. Oxides were thoroughly characterized by Raman and XAFS spectroscopy. It was determined that the duration of expose has more influence on all oxides transformations. The greatest changes occurred in U4O9, that transformed into U4O9-y. UO2.05 and U3O8 structures became more ordered and UO3 did not undergo significant transformation.


Assuntos
Compostos de Urânio , Urânio , Humanos , Urânio/química , Corpo Humano , Óxidos/química
7.
Langmuir ; 38(49): 15145-15155, 2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36454956

RESUMO

A one-step protocol for interfacial self-assembly of graphene oxide (GO), glutamine-substituted perylene diimide (PDI-glu), 10,12-pentacosadiynoic acid (PCDA), and zinc acetate into three- and four-component hybrid nanofilms through hydrogen and coordination bonding was developed. The hybrids deposited onto solid supports were studied after polymerization of PCDA by UV-vis absorption, fluorescence, and Raman spectroscopies, scanning electron microscopy (SEM), and atomic force microscopy (AFM). The results of spectroscopic studies suggest that the hybrids assembled through H-bonds can maintain the light-induced Förster energy transfer from the PDI-glu chromophore to the conjugated polymer and then to GO leading to fluorescence quenching. In the hybrids assembled through coordination bonding with zinc clusters, the energy transfer proceeds from PDI-glu to the PDA polymer, whereas the transfer from PDA to GO is quenched completely. Another important characteristic of these ultrathin hybrids is their stability with respect to photobleaching of chromophores due to the acceptor properties of GO. The as-assembled hybrid nanofilms were integrated with conventional photovoltaic planar architectures to study their photoelectric properties. The zinc-containing hybrids integrated with a hole transport layer exhibited photovoltaic properties. The cell with the integrated four-component hybrid comprising both PDI-glu and PDA showed a photocurrent/dark current ratio almost an order higher than that of the three-component hybrid assembled with PDA only. The supramolecular method based on the interfacial self-assembly can be extended to a wide variety of organic chromophores and polymerizable surfactants for integrating them into multicomponent functional GO-based nanohybrids with targeted properties for organic electronics.

8.
Membranes (Basel) ; 12(12)2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36557146

RESUMO

Various models, including stem cells derived and isolated cardiomyocytes with overexpressed channels, are utilized to analyze the functional interplay of diverse ion currents involved in cardiac automaticity and excitation-contraction coupling control. Here, we used ß-NAD and ammonia, known hyperpolarizing and depolarizing agents, respectively, and applied inhibitory analysis to reveal the interplay of several ion channels implicated in rat papillary muscle contractility control. We demonstrated that: 4 mM ß-NAD, having no strong impact on resting membrane potential (RMP) and action potential duration (APD90) of ventricular cardiomyocytes, evoked significant suppression of isometric force (F) of paced papillary muscle. Reactive blue 2 restored F to control values, suggesting the involvement of P2Y-receptor-dependent signaling in ß-NAD effects. Meantime, 5 mM NH4Cl did not show any effect on F of papillary muscle but resulted in significant RMP depolarization, APD90 shortening, and a rightward shift of I-V relationship for total steady state currents in cardiomyocytes. Paradoxically, NH4Cl, being added after ß-NAD and having no effect on RMP, APD, and I-V curve, recovered F to the control values, indicating ß-NAD/ammonia antagonism. Blocking of HCN, Kir2.x, and L-type calcium channels, Ca2+-activated K+ channels (SK, IK, and BK), or NCX exchanger reverse mode prevented this effect, indicating consistent cooperation of all currents mediated by these channels and NCX. We suggest that the activation of Kir2.x and HCN channels by extracellular K+, that creates positive and negative feedback, and known ammonia and K+ resemblance, may provide conditions required for the activation of all the chain of channels involved in the interplay. Here, we present a mechanistic model describing an interplay of channels and second messengers, which may explain discovered antagonism of ß-NAD and ammonia on rat papillary muscle contractile activity.

9.
Artigo em Inglês | MEDLINE | ID: mdl-35432493

RESUMO

Background: The cardiovascular system is one of the first systems to be affected by snake toxins; but not many toxins exert a direct effect on the heart. Cobra venom cardiotoxins are among those few toxins that attack the heart. Although the two cardiotoxin types (S and P) differ in their central-loop structure, it is not known whether they differ in their effect on the mammalian heart. We compared the effects of S- and P-type cardiotoxins, CTÐ¥-1 and CTÐ¥-2, respectively, from the cobra Naja oxiana, on the isolated rat heart. Methods: An isolated rat heart perfused according to the Langendorff technique was used in this study to investigate the activity of cardiotoxins CTX-1 and CTX-2. The following parameters were registered: the left ventricular developed pressure, calculated as the difference between systolic and diastolic pressure in the left ventricle, the end-diastolic pressure, the heart rate, time to maximal end-diastolic pressure (heart contracture), and time to depression of the heart contraction. Results: Both cardiotoxins at the concentration of 5 µg/mL initially produce a slight increase in systolic intraventricular pressure, followed by its rapid decrease with a simultaneous increase in diastolic intraventricular pressure until reaching contracture. CTX-2 blocks cardiac contractions faster than CTX-1; in its presence the maximum diastolic pressure is reached faster and the magnitude of the developed contracture is higher. Conclusion: The P-type cardiotoxin CTX-2 more strongly impairs rat heart functional activity than the S-type cardiotoxin CTX-1, as expressed in its faster blockage of cardiac contractions as well as in more rapid development and greater magnitude of contracture in its presence.

10.
J Synchrotron Radiat ; 29(Pt 2): 303-314, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35254292

RESUMO

Understanding the speciation of technogenic uranium in natural systems is crucial for estimating U migration and bioavailability and for developing remediation strategies for contaminated territories. Reference EXAFS data of model laboratory-prepared uranium compounds (`standards') are necessary to analyze U-contaminated samples from nuclear legacy sites. To minimize errors associated with measurements on different synchrotrons, it is important not only to compare data obtained on environmentally contaminated samples with the literature but also with `standards' collected at the same beamline. Before recording the EXAFS spectra, all reference compounds were thoroughly characterized by Raman spectroscopy and powder X-ray diffraction. The U(VI) local molecular environments in the reference compounds, i.e. uranyl oxyhydroxides, phosphates, carbonates and uranates, were examined using XAFS. Based on the EXAFS fitting results obtained, including the nature of the bonding, interatomic distances and coordination numbers, parameters that are typical for a particular U compound were differentiated. Using data for `standards', U speciation in the sample of radioactively contaminated soil was determined to be a mixture of U oxyhydroxide and carbonate phases.


Assuntos
Urânio , Difração de Raios X
11.
Nanomaterials (Basel) ; 12(3)2022 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-35159694

RESUMO

Diamond properties down to the quantum-size region are still poorly understood. High-pressure high-temperature (HPHT) synthesis from chloroadamantane molecules allows precise control of nanodiamond size. Thermal stability and optical properties of nanodiamonds with sizes spanning range from <1 to 8 nm are investigated. It is shown that the existing hypothesis about enhanced thermal stability of nanodiamonds smaller than 2 nm is incorrect. The most striking feature in IR absorption of these samples is the appearance of an enhanced transmission band near the diamond Raman mode (1332 cm-1). Following the previously proposed explanation, we attribute this phenomenon to the Fano effect caused by resonance of the diamond Raman mode with continuum of conductive surface states. We assume that these surface states may be formed by reconstruction of broken bonds on the nanodiamond surfaces. This effect is also responsible for the observed asymmetry of Raman scattering peak. The mechanism of nanodiamond formation in HPHT synthesis is proposed, explaining peculiarities of their structure and properties.

12.
Toxins (Basel) ; 14(2)2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-35202116

RESUMO

Cardiotoxins (CaTxs) are a group of snake toxins that affect the cardiovascular system (CVS). Two types (S and P) of CaTxs are known, but the exact differences in the effects of these types on CVS have not been thoroughly studied. We investigated cellular mechanisms of action on CVS for Naja oxiana cobra CaTxs CTX-1 (S-type) and CTX-2 (P-type) focusing on the papillary muscle (PM) contractility and contraction of aortic rings (AR) supplemented by pharmacological analysis. It was found that CTX-1 and CTX-2 exerted dose-dependent effects manifested in PM contracture and AR contraction. CTX-2 impaired functions of PM and AR more strongly than CTX-1. Effects of CaTxs on PM were significantly reduced by nifedipine, an L-type Ca2+ channel blocker, and by KB-R7943, an inhibitor of reverse-mode Na+/Ca2+ exchange. Furthermore, 2-aminoethoxydiphenyl borate, an inhibitor of store-operated calcium entry, partially restored PM contractility damaged by CaTxs. The CaTx influence on AR contracture was significantly reduced by nifedipine and KB-R7943. The involvement of reverse-mode Na+/Ca2+ exchange in the effect of CaTxs on the rat aorta was shown for the first time. The results obtained indicate that CaTx effects on CVS are mainly associated with disturbance of transporting systems responsible for the Ca2+ influx.


Assuntos
Aorta/efeitos dos fármacos , Cardiotoxinas/farmacologia , Venenos Elapídicos , Naja naja , Músculos Papilares/efeitos dos fármacos , Animais , Aorta/fisiologia , Masculino , Contração Muscular/efeitos dos fármacos , Músculos Papilares/fisiologia , Ratos Wistar , Vasoconstrição/efeitos dos fármacos
13.
J Comp Physiol B ; 2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34297192

RESUMO

The effect of phenylephrine (PE) on right ventricle papillary muscle (PM) and aortic segment (AS) contractile activity was studied in long-tailed ground squirrels Urocitellus undulatus during summer activity, torpor and interbout active (IBA) periods in comparison to rat. We found that PE (10 µM) exerts positive inotropic effect on ground squirrel PM that was blocked by α1-AR inhibitor-prazosin. PE differently affected frequency dependence of PM contraction in ground squirrels and rats. PE significantly increased the force of PM contraction in summer and hibernating ground squirrels including both torpor and IBA predominantly at the range of low stimulation frequencies (0.003-0.1 Hz), while in rat PM it was evident only at high stimulation frequency range (0.2-1.0 Hz). Further, it was found that PE vasoconstrictor effect on AS contractility is significantly higher in ground squirrels of torpid state compared to IBA and summer periods. Overall vasoconstrictor effect of PE was significantly higher in AS of ground squirrels of all periods compared to rats. Positive inotropic effect of PE on PM along with its vasoconstrictor effect on AS of ground squirrels was not affected by pretreatment with inhibitors of L-type Ca2+ channels, or Na+/Ca2+ exchanger or Ca2+-ATPase but was completely blocked by an inhibitor of store-operated Ca2+ entry (SOCE)-2-APB, suggesting the involvement of SOCE in the mechanisms underlying PE action on ground squirrel cardiovascular system. Obtained results support an idea about the significant role of alpha1-AR in adaptive mechanisms critical for the maintaining of cardiovascular contractile function in long-tailed ground squirrel Urocitellus undulatus.

14.
PLoS One ; 12(5): e0177469, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28531217

RESUMO

Hibernators have a distinctive ability to adapt to seasonal changes of body temperature in a range between 37°C and near freezing, exhibiting, among other features, a unique reversibility of cardiac contractility. The adaptation of myocardial contractility in hibernation state relies on alterations of excitation contraction coupling, which becomes less-dependent from extracellular Ca2+ entry and is predominantly controlled by Ca2+ release from sarcoplasmic reticulum, replenished by the Ca2+-ATPase (SERCA). We found that the specific SERCA inhibitor cyclopiazonic acid (CPA), in contrast to its effect in papillary muscles (PM) from rat hearts, did not reduce but rather potentiated contractility of PM from hibernating ground squirrels (GS). In GS ventricles we identified drastically elevated, compared to rats, expression of Orai1, Stim1 and Trpc1/3/4/5/6/7 mRNAs, putative components of store operated Ca2+ channels (SOC). Trpc3 protein levels were found increased in winter compared to summer GS, yet levels of Trpc5, Trpc6 or Trpc7 remained unchanged. Under suppressed voltage-dependent K+, Na+ and Ca2+ currents, the SOC inhibitor 2-aminoethyl diphenylborinate (2-APB) diminished whole-cell membrane currents in isolated cardiomyocytes from hibernating GS, but not from rats. During cooling-reheating cycles (30°C-7°C-30°C) of ground squirrel PM, 2-APB did not affect typical CPA-sensitive elevation of contractile force at low temperatures, but precluded the contractility at 30°C before and after the cooling. Wash-out of 2-APB reversed PM contractility to control values. Thus, we suggest that SOC play a pivotal role in governing the ability of hibernator hearts to maintain their function during the transition in and out of hibernating states.


Assuntos
Hibernação , Indóis/farmacologia , Músculos Papilares/fisiologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Retículo Sarcoplasmático/metabolismo , Sciuridae/fisiologia , Animais , Cálcio/metabolismo , Células Cultivadas , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Contração Miocárdica/efeitos dos fármacos , Músculos Papilares/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Sciuridae/metabolismo , Transdução de Sinais/efeitos dos fármacos , Temperatura
15.
J Mol Cell Cardiol ; 100: 9-20, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27659409

RESUMO

Sustained cardiac adrenergic stimulation has been implicated in the development of heart failure and ventricular dysrhythmia. Conventionally, α2 adrenoceptors (α2-AR) have been assigned to a sympathetic short-loop feedback aimed at attenuating catecholamine release. We have recently revealed the expression of α2-AR in the sarcolemma of cardiomyocytes and identified the ability of α2-AR signaling to suppress spontaneous Ca2+ transients through nitric oxide (NO) dependent pathways. Herein, patch-clamp measurements and serine/threonine phosphatase assay revealed that, in isolated rat cardiomyocytes, activation of α2-AR suppressed L-type Ca2+ current (ICaL) via stimulation of NO synthesis and protein kinase G- (PKG) dependent activation of phosphatase reactions, counteracting isoproterenol-induced ß-adrenergic activation. Under stimulation with norepinephrine (NE), an agonist of ß- and α-adrenoceptors, the α2-AR antagonist yohimbine substantially elevated ICaL at NE levels >10nM. Concomitantly, yohimbine potentiated triggered intracellular Ca2+ dynamics and contractility of cardiac papillary muscles. Therefore, in addition to the α2-AR-mediated feedback suppression of sympathetic and adrenal catecholamine release, α2-AR in cardiomyocytes can govern a previously unrecognized local cardiomyocyte-delimited stress-reactive signaling pathway. We suggest that such aberrant α2-AR signaling may contribute to the development of cardiomyopathy under sustained sympathetic drive. Indeed, in cardiomyocytes of spontaneously hypertensive rats (SHR), an established model of cardiac hypertrophy, α2-AR signaling was dramatically reduced despite increased α2-AR mRNA levels compared to normal cardiomyocytes. Thus, targeting α2-AR signaling mechanisms in cardiomyocytes may find implications in medical strategies against maladaptive cardiac remodeling associated with chronic sympathoadrenal stimulation.


Assuntos
Miócitos Cardíacos/metabolismo , Receptores Adrenérgicos alfa 2/metabolismo , Sarcolema/metabolismo , Agonistas de Receptores Adrenérgicos alfa 2/farmacologia , Animais , Sinalização do Cálcio/efeitos dos fármacos , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Cardiomegalia/fisiopatologia , GMP Cíclico/metabolismo , Modelos Animais de Doenças , Masculino , Contração Miocárdica , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/efeitos dos fármacos , Óxido Nítrico/metabolismo , Proteína Fosfatase 2/metabolismo , Ratos , Ratos Endogâmicos SHR , Receptores de Neuropeptídeo Y/agonistas , Receptores de Neuropeptídeo Y/metabolismo , Sarcolema/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...